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ABSTRACT Interest in the use of engineered nanomaterials (ENMs) as either
nanomedicines or dental materials/devices in clinical dentistry is growing. This
review aims to detail the ultrafine structure, chemical composition, and reactivity of
dental tissues in the context of interactions with ENMs, including the saliva, pellicle
layer, and oral biofilm; then describes the applications of ENMs in dentistry in
context with beneficial clinical outcomes versus potential risks. The flow rate and
quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but
how the protein corona formed on the ENMs will alter bioavailability, or interact
with the structure and proteins of the pellicle layer, as well as microbes in the
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biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal
tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for
infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants.
Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the
hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical
safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also
needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms,
and mechanistic investigations on how ENMs strengthen the tooth structure.

KEYWORDS: nanoparticles - protein corona - biomaterials - nanocomposites - dental implants - tooth chemistry - dentine - enamel -
calcium hydroxyapatite - pulp stem cells differentiation - infection control - antibacterial activity

he medical applications of engi-

neered nanomaterials (ENMs) are re-

latively well-known. These include
antibacterial coatings for medical instru-
ments and wound dressings (e.g., self-ster-
ilizing TiO, catheters;' nano-ZnO composite
bandages?), the use of nanoencapsulation
technology forimproved drug delivery,>* as
well as exploiting the optical properties
of nanomaterials for enhanced medical
imaging.> Some of the clinical aspects
above (e.g., antibacterial ENMs) are particu-
larly relevant to the oral cavity, and the role
of ENMs in the control of the oral biofilm
has been recognized.® Although the use of
ENMs in dental applications has received
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some commentary,”? a detailed evidence-
based review has not been conducted, even
though the use of nanotechnology in den-
tistry and dental materials has been the
epicenter of extensive research in recent
years.

In the oral cavity, nonclinical or occupa-
tional exposures are dependent on the use
of nanoparticles (NPs) in food®'® and per-
sonal care products, such as dentifrices."
TiO, NPs are the most commonly used in
food and personal care products (also
known as E171 in food products, with 36%
of the particles <100 nm'?). The ingestion of
TiO, via food is estimated to be relatively
high (5 mg of TiO./person/d);"* half of
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which is in nanoparticulate form."* Numerous studies
have investigated the potential toxicity of ENMs,'>'®
but the data is sparse on cells relevant to the oral cavity;
although there is interest in using engineered and
naturally occurring NMs to manipulate the cells/tissues
associated with dentition (e.g., controlling differentia-
tion of pulp stem cells'”). Some oral exposures have
been done with rodents in vivo,'®'® but none of these
have collected samples to investigate potential pathol-
ogies in the oral cavity. Such data will be important in
quantifying the risks of ENMs in the oral cavity and in
supporting the notion of responsible and safe innova-
tion of nanotechnology in dentistry.

As with any new medicine or medical device, the
potential benefits must be weighed against the
risks.2%2" In terms of adverse health effects, there is a
historic literature on the occupational exposure to
dusts containing ultrafine particles®? and the concern
of respiratory toxicity from inhaling ENMs has also
been reviewed for different ENMs (CNTs;>>** metal
particles and silica®®), with a particular focus on high
aspect ratio ENMs that may cause acute inflammation
in the Iungs.26 However, most of this literature has
been concerned with events in the lung, not the oral
cavity, and traditionally these experiments have used
free forms of ENMs in aerosols or instillations, not ENMs
that are embedded in the matrix of a commercial product,
in semisolid materials like food, or in a dental material.

This review illustrates the evidence base for the
applications of ENMs in dentistry. The electronic search
was conducted applying a combination of subject
terms and keywords on PubMed, Medline, Scopus,
and Web of Knowledge databases. The electronic
search terms focused on the four main application
fields in dentistry (as antimicrobial agents, fillers in
dental composites, dental implants, and in personal
care products for the oral cavity), as well as the
potential in vivo toxicity caused by ENMs following
oral exposure. The keywords applied to the search
databases were: (nanomaterial OR nanoparticle OR
nanocoating OR nanotechnology) AND (antimicrobial
OR antibacterial OR infection OR biofilm OR filler OR
composite OR implant OR dentine OR enamel OR
demineralization OR remineralization OR dentifrice
OR toothpaste OR mouthwash OR oral product OR
in vivo oral exposure toxicity) AND (dentistry OR dental
OR oral). Quality criteria included considerations of
experimental design in the published literature such
as the use of appropriate bulk material or metal salt
controls, and inclusion of information on at least
the characterization of the starting material such as
chemical composition, primary particle size, and size
distribution where relevant. Papers with inadequate
material characterization or poor descriptions of meth-
odology or replication were excluded. The examples
were also chosen to show a representative selection of
materials, applications, and the historical chronology
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VOCABULARY: Engineered nanomaterials-any inten-
tionally manufactured material containing particles in an
unbound state, or as an aggregate or as an agglomerate
and where, for 50% or more of the particles in the number
size distribution, one or more external dimensions is in the
size range 1 to 100 nm; Protein corona-a dynamic layer of
proteins and other biomolecules that spontaneously ad-
sorb onto the surface of a nanoparticle, when the nano-
particle enters a biological fluid. The biological identity of
the nanoparticle is then determined by this adsorption
layer once the protein corona is formed. The biophysical
properties of the nanoparticle—protein corona complex
can very significantly compared to the nanoparticle alone,
with consequent effects on the biological responses of
cells or organisms; Adsorption-the process of biomole-
cule and/or solute accumulation at a cell membrane sur-
face. Adsorption can be physical or chemical in origin. The
biomolecular interactions of adsorption are governed by
van der Waals forces, electrostatic attraction, and/or hy-
drogen bonding depending on the substances and sur-
faces involved; Nanoparticle dissolution-the dynamic
process by which atoms or molecules from the surface of
a nanoparticle go into the solution phase; such that the
dispersion contains a homogeneous mixture of particles
and dissolved solutes derived from the surface of the
particle. The degree of dissolution is dictated by the
solubility of the material and the available surface area
for dissolution, in addition to traditional factors in solution
chemistry such as temperature, pH, and ionic strength. As
for any material, it is a prerequisite that the constituent
molecules must be soluble to some degree in the local
environment in order for a nanoparticle to dissolve;
Enamel-the superficial layer that covers the crown of the
tooth and is the hardest and most highly mineralized
tissue in the body (96% w/w). The high mineral content
renders enamel very strong, but also accounts for its
brittleness. Enamel apatite consists of calcium hydroxya-
patite and is highly crystalline with most crystals to be
hexagonal; Dentine-a hydrated composite mineralized
tissue that underlies enamel and forms the bulk of the
tooth. Dentine is 70% inorganic, 20% organic, and 10%
water by weight. The mineral phase is hydroxyapatite,
similar to enamel, but dentine crystals have lower calcium
content and are much smaller. The organic component of
dentine is mainly collagen and is a permeable tissue due to
the presence of the dentinal tubules; Dental material-a
substance or combination of substances specially pre-
pared and/or presented for use by authorized persons in
the practice of dentistry and/or its associated procedures

of the development of ENMs in this field. Selected
examples from the published literature are presented
in Tables 1-5.

The aims of this review were to (i) reflect on the
ultrafine structure, chemical composition, and reactiv-
ity of teeth in the context of interactions with ENMs,
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and to set the scene on the nanoscale biology and
surface film events in the oral cavity, (ii) describe the
main actual and proposed applications of ENMs in
dentistry, and (iii) put the dental applications in context
of clinical outcomes versus potential hazards as well as
risks. Finally, (iv) key knowledge gaps are identified
with some recommendations for future research.

Huang et al. (2010)"32

Nam (2011)"°

PROPERTIES OF SALIVA AND THE BEHAVIOR OF
ENMS

o N = L - T T
228 = E- 22
= g E g é g & x % % 8
Es 22 E2BESREES
IS =1 < e < &= S < . . . .
238 < E g3 2h sS85~ Saliva is a complex mucous secretion that functions
= = - & s = 2 T Lo . . .
) g§ Sg=8€e¥ to maintain the pH in the oral cavity, mostly via
22 £5£.=z=835= i ) )
§ESEE FEgE=SER bicarbonate and some calcium phosphate buffering.?’
s & 8 =€ 5 F S~ o . . . .
£5S8SEnge s 3 £z° Acids derived from the consumption of food and drink
s eSS g 3 S 59 . . . .
z2e SEeggs= S wq” £ and/or bacterial metabolism are neutralized by bicar-
S E LS g Lo < . . . .
e T £ggXsgERFE E bonate (Figure 1B) in order to prevent acid erosion of
E2S 7.5 g2EmE0 28,29
E s £§2 2 g 2885 HE ~ the teeth.”*“” Additionally, saliva has a rinsing effect on
CTUHUBFEFERSgE=_ Yo . . .
2E5c=2EE2E S8 8 g teeth and contributes to bacteria clearance, but it also
S EBE25g5cmasz oy . . . ) ' .
EpESgEEEs T LLs contains antibacterial proteins (e.g., lysozyme, iron
£EETEZTRFETEET DX EEE .
S5 S8 8282253 38 chelators such as lactoferrin) and components of the
o= £g = sy immune system (e.g., immunoglobulins). Clearly, the
=g § 53 £ e g [ antimicrobial properties of ENMs are of interest in
2T 245 =28 23% . .
E=xg &< =g E=E 2 % relation to the latter functions (see below), but the
- = O = = = 9 S 2 . . . . .
££=2¢8 E S28E58 behavior of ENMs in saliva will also be influenced by
= S E s x _ETZ . . .
= t: ERE n~ gELSZ § the pH, electrolyte composition, and viscous properties
s =2 &8 S + g = e g g of the mucus components.
2T 5 = - € 5 < o = . . . .
£5EE8 <SE2 EETE It is not our intention here to detail the complex
5 o 8 € & = S S g 3= &8 . . . . . .
e~ g°§ ESegcSsE g physicochemistry of ENMs in biological media, but to
E S o T E B : e = o ¥ =
m—gESyY S£E£EsEEs 8= appreciate the importance of the colloidal properties
- 5 3 E n £ = =S
X3 ZB YR 8 S 2 £ . . . . .
oSS ESREgTE~SES L= of ENMs that might be important for saliva. First with
S -2 4,SFS=2582 2% g
S . 2882833 =2 s respect to colloid chemistry, most ENMs are not in true
L ® oy 8= N2 = ZF3 = . . . . .
g g S=2288 % o = g aqueous solution but are dispersed in the liquid phase;
5=825£Zs E£g g ; . ) . .
2 EES-35EESZ ¢ = with the aggregation of the materials being particularly
[=) = . . . .
= :‘ 5 influenced by the ionic strength of the medium, the
g g = presence of divalent ions like calcium, pH, and the
o = . — . .
= £ ) presence of organic matter.2~>3 Saliva is 99% water and
S = 2 . . . .
2 £ _§ is a high ionic strength medium containing numerous
= - 3 . . .
g B £ electrolytes. The exact electrolyte concentrations in saliva
= o = . . . —1 .
= = L .
£ Z can vary, but it normally contains (in mmol L™ ); sodium
= = g ! !
g =z g (2—26), potassium (13—40), phosphate (2—22), calcium
% 2 % (0.5—2.8), chloride (8—40), iodide (2—22), bicarbonate
o £ 5 (0.1—8), magnesium (0.15—0.6), and a trace amount of
= < =z fluoride (usually at #umol L™"). These concentrations
o © = . . . . -
S & E may be higher in freshly stimulated saliva.>* The milli-
T E E molar concentrations of NaCl and the divalent ions
P e = =2 2+ 24 :
£ - S such as Ca”" and Mg“™ will tend to promote particle
S o o o . . . .
&5 g aggregation.®’ Consequently, similar to physiological
S > 8 . = . . .
_i g f s = salines,®® saliva may promote the settling of aggre-
[T S & =3 .
=27 £% = gates of the ENM onto the surfaces of the oral cavity.
I, =& 3
SsE g = i The resulting effects of ENMs in a dental material on
15
S E=E 2 = . . .
TS ES kS o the bulk electrolyte functions of saliva are likely to be
T =558 2 5 dest since the millimol ions of NaCl
5 =T gs b £ modest since the millimolar concentrations of NaC
- = 2 = . . . .
g EEL €S < £ and Ca" in the saliva would (theoretically) be in excess
o (=) § o vy . ]
O ﬁ‘ z z > = E of any labile ENM. For example, Besinis et al. found
. o B 2 E k= ey . . .
~ 8552 = = only negligible low micromolar release of silver from
~ © K ~— ; . . ..
= £ E o3 £ ; dentine slices coated with Ag NPs.>® The rheology and
© S . . . .
E 27 3 = viscous properties of mucous solutions are mainly
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derived from the effects of charge screening by elec-
trolytes on the protein folding of mucins.3” Provided
the ion concentrations remain at millimolar levels, the
effects of ENMs on the rheology of saliva are expected
to be small. For similar reasons, the general pH
buffering in saliva from millimolar concentrations
of phosphate and bicarbonate might also be unaf-
fected. However, ENMs often have a high surface
area to volume ratio, and it is possible that solutes
such as fluoride, that are only present at micromolar
concentrations, could be adsorbed by some ENMs.
The F~ ions in saliva can react strongly with the free
Ca®?" and HPO,2™ ions available in the hydroxyapa-
tite (HA) of enamel to form fluorapatite crystals that
are less soluble and more resistant to acids com-
pared to pure HA (Figure 1B). This is one of the
benefits of fluoride in preventing dental caries, and
theoretically this function may be lost, especially
with ENMs with a net cationic charge in the saliva.
Unfortunately, the effects of ENMs on the bioavail-
ability of important trace anions have not been
investigated.

occurred in the spleen, kidney, lung, brain, and liver; depending
on particle size. Organ pathologies in the liver were interpreted as
were 413, >5000, and 110 mg kg~ body weight, respectively.
Nanoscale material caused atrophy of the spleen with fibrosis.
Mild steatosis reported in the liver, and moderate tubular necrosis

necrosis of hepatocytes. Blood urea nitrogen elevated in the
in the kidneys of Cu NP-exposed mice.

25 nm Ti0, treatment, interpreted as renal dysfunction.

The accumulation of Ti metal from nanoscale Ti0, (25 and 80 nm) Wang et al. (2007)23]
hydropic degeneration around the central vein and the spotty

Imprinting control region (ICR)  The LDs, values for the nano and , microcopper particles, and CuCl, Chen et al. (2006)*>

E The salivary flow rate also controls the solute con-

g centrations in the oral cavity. Factors such as age,

; diseases, and medication can impair the quantity

i (and quality) of saliva. The reduction or absence of

% % the salivary flow usually results in increased food
z% E retention, and when the salivary buffering capacity
has been lost, an acid environment is encouraged

causing enamel demineralization. In a healthy per-

son, the unstimulated (resting) salivary flow rate

is 03—0.4 mL min~' and may increase to 1.5—2.0

mL min~".3*When saliva is initially secreted, it is sterile,

o) o) but subsequently the bacterial concentration can
z z reach 10° mL™". Salivary flow rate is normally too high
s s to allow bacterial growth and proliferation in the
2z ey fluid.®® Instead, bacteria need to adhere on an oral

surface (teeth, mucosal tissue) to survive in the long
term. The secretion of saliva is mainly controlled by
cholinergic parasympathetic innervation to the sali-
vary glands, which promotes the release of saliva
from the acinar cells, while in contrast stimulation
of sympathetic nerves tends to increase the protein
content, resulting in a more viscous saliva.>® Evidence
suggests that direct application of high milligram
concentrations of ENMs to isolated nerve prep-
arations does not alter the ability of peripheral nerves
to generate an action potential,*® but the effects of
ENMs on the secretory activity of salivary glands have
not been investigated.

Saliva also contains immunological components
(e.g., IgA, 1gG, and IgM) and antibacterial proteins
(e.g., lysozyme, lactoferrin, and peroxidases). The ef-
fects of ENMs on the bioavailability and function of
these immune-related components of saliva have not
been specifically investigated. However, immunoglo-
bulins and complement factors involved in immunity

108—1080 (nano), 24—237

Control, 500—5000 (micron powder),
(metal salt), in mg kg .

(17 tm), or CuCl, metal salt.

Ti0, NPs (25 and 80 nm), compared to 59kg‘1 for 2 weeks.
155 nm material.

“Studies are presented in chronological order for convenience.

Cu NPs (23.5 nm), Cu microparticles

Table 5. Continued
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Figure 1. (A) Diagram shows the presence of NPs (isolated particles or agglomerates) in saliva and the structure of dental
tissues. The pellicle covers the superficial layer of enamel, and the oral biofilm develops on the pellicle surface. The
characteristic hexagonal shape of the enamel crystallites is apparent and also the presence of the dentinal tubules in the
underlying tissue of dentine. The NP—ion—protein complexes do not adhere directly to the tooth surfaces, but adhesion
occurs either to the pellicle layer or the developing biofilm. (B) Schematic diagram of the oral environment, oral biofilm, and
dental mineralized tissues showing the distribution of NPs and ions. Natural saliva normally contains a range of ions and
proteins. In the presence of NPs, NP—ion—protein complexes are formed. Oral conditions promote particle agglomeration
that results in particle sedimentation onto the dental surfaces. The pellicle has a globular structure and its proteinaceous layer
facilitates the adherence of the early colonizing species necessary for the oral biofilm development. The oral biofilm and
pellicle act as diffusion/permeation barriers to NPs preventing them from reaching the enamel—pellicle interface. Certain ions
(F~,CI7,Si04*~, Zn>") are more abundant near the external surface of enamel, while others (Na™, Mg>*, CO;2") are found at higher
concentrations near the dentino—enamel junction. The most commonly ions found in dentine are F~, Na™, Mg“, and CO;%~.

from serum do adsorb to ENMs, depending especially
on the surface charge and hydrophobicity of the
material.*! Lysozyme is also adsorbed onto the surface
of some ENMs resulting in an alteration of the spatial
arrangements of the f-sheets in the enzymes tertiary
structure with a likely loss of its antibacterial properties
(e.g., TiO,*). In contrast, some ENMs have peroxidase-

BESINIS ET AL.

like chemical reactivity,** and such materials could be
exploited for their antimicrobial properties. There are
numerous other organic components in saliva includ-
ing the mucin glycoproteins, agglutinins, histatins,
proline-rich proteins, statherins, and cystatins.** The
effects of ENMs on many of these proteins/peptides are
unknown.
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TOOTH SURFACE MICROENVIRONMENT AND
INTERACTIONS WITH ENMS

Substances in saliva do not interact directly with the
tooth enamel, but do so via a thin layer known as the
pellicle, which usually covers the dentition (Figure 1A,B).
The pellicle is an acellular proteinaceous film of
salivary origin that is usually formed within minutes,
and it is so strongly adhered to the enamel that even
tooth brushing does not remove it. The thickness of the
pellicle is 10—20 nm within a few minutes, increases to
20-500 nm at 2 h, and reaches 100—1300 nm at 24 h.**
The main constituents of pellicle are salivary glycopro-
teins, phosphoproteins, lipids, and to a lesser extent,
components from the gingival crevicular fluid.***” The
pellicle plays an important role in the tooth deminer-
alization and remineralization processes because it
passively controls the diffusion of ions in and out of
the dental tissues. It is therefore a selective semiperme-
able structure that is regarded as a chemical buffering
barrier, protecting the mineral content of the enamel
from bacterial*® and dietary acid demineralization.*>>°
However, the structure of newly formed pellicle may
not prevent the penetration of ENMs. The enamel—
pellicle interface is not a homogeneous film, but has a
multilayered globular structure.®' The size of these
spherical structures ranges between 25 and 125 nm
in diameter, and quite often voids are also observed, as
the distance between adjacent globules is from 8 to
85 nm (sizes and distances measured from electron
microscopy images of a 2 h pellicle®). It is therefore
theoretically possible that ENMs smaller in size than
these voids could penetrate the pellicle as it forms.
However, once the proteinaceous biofilm is present
over the globular structure of the pellicle, it seems
likely that steric hindrance and protein—ENM interac-
tions would slow or prevent further diffusion of the
ENMs into the pellicle layer.

The formation process of the proteinaceous
pellicle layer is not fully understood, but is presumably
governed by the colloidal and physicochemical prop-
erties of the macromolecules in saliva, such as the
charge density, hydrophobicity, and relative concen-
tration of each component to compete for binding on
the tooth surface. Much the same ideas apply to the
formation of the “protein corona” on ENMs in complex
body fluids such as serum.>*>* It is therefore logical
that any ENMs present in the saliva will compete with
the pellicle surface for proteins and other macromole-
cules in the saliva. The newly formed protein corona of
ENMs (Figure 1A,B) will inevitably alter their physico-
chemical properties. For example, adsorbed proteins
may alter the net surface charge on the ENMs (changes
in zeta potential and isoelectric points of NPs>®); and
consequently the charge screening with electrolytes
and the agglomeration behavior of the ENMs in the
saliva itself. In theory, the interactions of the coated
ENMs with the pellicle will also be influenced. It also

BESINIS ET AL.

follows that a tooth coated with an ENM of defined
surface chemistry could be used to manipulate the
formation of the pellicle. The latter may be of interest
for preventing microbial colonization of the teeth, for
example, by providing a surface that does not favor
microbial adherence. Bacteria are probably nonspeci-
fically associated with the tooth surface (Figure 1B)
under the effect of van der Waal's attractive forces as
well as attractive or repulsive electrostatic, hydrogen
bonding, and Brownian motion forces.>® Surface hy-
drophobicity generally enhances the attachment of
microbes, and consequently a hydrophilic ENM coat-
ing might reduce the attachment of microbes.

Numerous studies have examined the antibacterial
effect of NPs incorporated in the matrix of dental
materials against mostly individual oral pathogens
(see Table 1), while other research groups have inves-
tigated the antibacterial activity of NPs suspended in
biological media containing microbes.>’*® However,
the antimicrobial effects of ENMs in complex clinically
relevant biofilms such as those on the pellicle are far
from clear. In general, the microbial communities in
natural biofilms tend to be more resilient than the
artificial cultures of individual species of microbes in
the laboratory. For example, while Ag NPs are known
for their antimicrobial properties on S. mutans,3%°® the
same material has no effect on the natural microbial
diversity in marine biofilms that also include Strepto-
coccus species.>® The biodiversity of gut microflora is
also influenced by metallic ENMs in some animals (e.g.,
fish gut®®), but a similar understanding for the oral
cavity biofilm of humans is lacking.

Although some ENMs may be small enough to
theoretically permeate into the porous mineral struc-
ture of the enamel—pellicle interface (above), it is likely
that the biofilm formed on the pellicle will be a
significant barrier to ENM diffusion; either through
steric hindrance (e.g, ENMs becoming entrapped or
entangled in the biofilm protein matrix) or by ad-
sorption of the ENM onto the glycoprotein coat of
the S-layer of microbes.®’ Permeation into biofilms is
partly controlled by biofilm thickness. Diffusion works
most efficiently over small distances of a few microns
and is exponentially slower for small increases in
particle diameter.5? The diffusion path through the
biofilm will also be determined by the microarchitec-
ture of the biofilm; which is defined by the participat-
ing species and the conditions under which the biofilm
is developed (potentially, every biofilm is unique in this
respect). Channels and voids are known to be present
in the oral biofilm. Plaque models have shown that the
open channels can be 300 nm in diameter,®> which
theoretically would be large enough to allow ENMs to
permeate. However, diffusion theory based on the
original Fick equations is idealized and does not take
into account solvent drag or steric hindrance from
proteins in the biofilm. Consequently, even small NPs
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(<20 nm) may find it difficult to penetrate the biofilm.
For example, Thurnheer et al. found that 240 kDa
molecules had difficulty in infiltrating the oral bio-
film.%* The volume occupied by a molecule of this size
is approximately 290 nm?® and thus, it would be
equivalent to a spherical NP of just 4 nm in diameter.
Furthermore, it is also likely that the ENMs diffusing
into the biofilm will not be pristine, but coated in
macromolecules and electrolytes from the saliva.
Although the protein corona formation on ENMs in
saliva has not been specifically studied, chemistry
would suggest (for example) that the polyanionic
mucins in saliva would bind electrostatically to cationic
ENMs and/or that the bulk electrolytes in saliva will
form an electric double layer on the surface of the
particles." The process is also likely to be dynamic with
microbes secreting proteinaceous material as the bio-
film develops and the bulk fluid moves into the pellicle
enabling some adsorption of ENMs into the biofilm
(the latter adsorption partly being governed by un-
stirred layer formation in the case of solutes®?).
Nonetheless, understanding of how EMNs coated in
a salivary corona will interact with the biofilm, and the
microbes within it, is a significant data gap in quantify-
ing the bioavailability of oral ENMs. Experiments are
needed to determine the details of how the adhesion
of ENMs on the dental surfaces is regulated, as well as
the likely complex interactions of the ENMs with the
bacteria, their secretory products, and the proteins
forming the underlying pellicle layer. Currently there
are no computational models for ENM binding to
biological surfaces, but ENM adhesion or adsorption
is likely to be governed by the chemistry of the pellicle
and overlying biofilm (plaque) since the ENMs would
not be in direct contact with the chemistry of the
enamel surface. Any such biotic ligand type-model
would need to consider the effects of the ionic strength
and its likely ability to erode the electric double layer
on the particle surface;*"°®%” the role of protein corona
formation to sometimes encourage colloidal stability®®~7°
or alternatively promote agglomeration”' "3 depend-
ing on the precise mixture of ions and macromolecules
present in the media. ENMs can also impose structural
and functional changes to the adsorbed proteins,”*
although the functional consequences for the saliva,
pellicle, and biofilm remain to be investigated.

INTERACTION OF ENMS WITH THE FINE
STRUCTURE AND CHEMISTRY OF THE TOOTH
The gross anatomy and fine structure of human
teeth are well-known,”” but here the anatomical and
chemical characteristics of the tooth are considered
in the context of potential interactions with ENMs
(Figure 1). Teeth consist of four different tissues of
which three are mineralized (enamel, dentine, cemen-
tum) and surround an inner core of loose connective
tissue; the fourth tissue, known as the dental pulp
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(Figure 2). The chemical composition of each tissue is
outlined below.

Enamel. Enamel covers the crown of the tooth and is
the hardest and most densely calcified tissue in the
body. Its thickness varies as a function of location and
age in the tooth”® and can be between 2.6 mm over the
cusps of sound mature teeth and as low as 1.2 mm on
the lateral surfaces.”” Ninety-six percent of the enamel
by weight consists of mineral, with water and organic
material composing the rest.”® Calcium hydroxyapatite
(Caq19(PO,4)6(OH),) is the most dominant constituent of
enamel, although minor (<2%) nonapatitic mineral
phases, such as octacalcium phosphate, can be de-
tected. Calcium hydroxyapatite (HA) does not always
exist in its pure form, but commonly other variations
are also present. Calcium ions (Ca>™) and hydroxyl
groups are frequently missing and thus replaced by
other ions present in the enamel such as fluoride (F7),
carbonate (CO527), chlorine (CI7), silicon (usually as
Si0,*"), sodium (Na™), magnesium (Mg*"), and zinc
(Zn?*). The distribution of these ions is not even across
the enamel layer (Figure 1B). Some of them (F~, Cl~, Si,
Zn*") appear at higher concentrations near the exter-
nal surface of enamel, while others (Na*, Mg?*, CO5%")
are more abundant near the dentino—enamel junction
(DEJ).”®2% Enamel apatite is highly crystalline, with
the crystals being at least 100 um long, 30 nm wide,
and 90 nm thick®' Most crystals are hexagonal
(Figures1A,B) but some can be distorted due to crowd-
ing. Dental enamel has 558 crystallites/mm? near the
tooth surface®” and the distance between adjacent
crystallites is 20 nm.2% HA crystals are surrounded by a
thin film of firmly bound water (2 wt %). The presence
of water is associated with the porosity of the tissue.
The remaining 2 wt % in mature enamel is the organic
matrix. Enamel does not contain collagen, but it has
two unique classes of proteins called amelogenins and
enamelins.

The ability of ENMs to permeate or adhere to the
tooth enamel is poorly understood. Enamel is perme-
able to electrolytes, although in this dense and highly
mineralized tissue this is most likely via intercrystalline
spaces, rod sheaths, and other defects in the surface.8*8¢
Nguyen et al. confirmed some innate permeability of
human enamel using the Brunauer—Emmett—Teller
(BET) gas adsorption method giving a BET surface
area, pore volume, and pore size of 0.22 m? g/,
2.8 mm?>g~", and 22 nm, respectively.?” There appears
to be no data showing whether or not ENMs are
capable of permeating enamel. However, Li et al. report
the use of 20 nm HA particles to repair dentinal
enamel®® Cai et al. also suggested that HA NPs with
sizes <20 nm could integrate with the surface of enamel
matrix, but highlighted the importance of particle size
with the use of 20 nm particles being more advanta-
geous than 40 or 80 nm HA particles.®® The exact type
of bonds developed between ENMs and the enamel
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Antibacterial effect on oral bacteria:
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Au and Cu NPs
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Figure 2. Tooth anatomy showing the four main components of the tooth (enamel, dentine, cementum, and pulp). Details of
the complex oral biofilm, which develops on the tooth surfaces, and the characteristic microscopic channels (dentinal tubules)
that permeate dentine are also shown. Dental research studies have investigated the use of a big range of ENMs in different
clinical applications including enamel remineralization strategies, antibacterial applications, caries management, dentine

hypersensitivity, and root canal disinfection.

remains unclear, although it seems probable that elec-
trostatic and van der Waals forces will be involved.*®®!

Dentine. Dentine is about 70% inorganic, 20% or-
ganic, and 10% water by weight.”? The mineral phase
is HA, similar to enamel, but dentine crystals have a
lower calcium content and are more carbonate-rich
compared to stoichiometric HA. The crystallites are
much smaller than those found in enamel, having a
hexagonal or plate-like morphology, and with dimen-
sions of 3—30 nm in cross-section and about 50 nm in
length.>** The HA crystals are therefore naturally
occurring nanostructures, and with high concentration
of carbonate (4.6 wt %) renders the dentine a large and
chemically reactive surface area.’® Fluoride, sodium,
and magnesium have also been detected in dentine in
small amounts (Figure 1B). The organic part of dentine
is mainly type | collagen that provides the structural
backbone, which holds together the apatite crystal-
lites. The fibril diameter in dentine collagen varies from
60 to 200 nm.*®

Dentine is permeated by characteristic microscopic
channels called dentinal tubules (Figures 1B and 2).
Their diameter ranges from 2.5 um near the pulp, to
1.2 um in the middle of dentine, and 900 nm near the
DEJ?” The tubule density also varies depending
on location. The number of tubules near the pulp is
45,000 mm ™2 covering 22% of the total surface area of
dentine, in the mid portion there are 29,500 mm ™2
tubules, and the corresponding value near the
DEJ is 20,000 mm™2 where the percentage of the
dentine surface area occupied by dentinal tubules is
just 19%.%>%7
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The application of ENMs to dentine has received
more attention (see Dentifrices and Personal Care
Products section) compared to enamel (Table 4);
mainly because dentine remineralization is not so
predictably achieved. Dentine is more porous than
enamel due to its organic components, higher water
concentration, and the presence of dentinal tubules.
Consequently, ENMs of larger diameters are more
likely to infiltrate dentine than enamel. Earl et al.
managed to infiltrate dentine tubules with 100 nm
HA particles finding that the shape of the ENMs
was also important.®® In the same study, larger
needle-like HA particles up to 600 nm in length and
30—60 nm in width showed very limited infiltration.
When demineralized dentine was treated with HA
nanorods having an average size less than 100 nm
(variation in particle length was between 30 and
145 nm), 50% of the tubules at the dentine surface
were fully occluded and an additional 40% were
partially occluded.”®

Most studies investigating the infiltration of dentine
with ENMs use a partially demineralized dentine
model. Consequently, interfibrillar and intrafibrillar in-
filtration is also possible as removal of the inorganic
components during demineralization results in larger
voids between the collagen fibers.'® Using a fully
demineralized model instead, Besinis et al. achieved
an extensive infiltration of the dentine collagen net-
work with spherical HA and silica NPs when the particle
size was less than 15 nm in diameter;'®' in agreement
with measurements of the interfibrillar spaces after de-
mineralization between 20—25 nm.'%>"%3 |n a follow-up
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study, Besinis et al. confirmed the remineralization
potential of fully demineralized dentine following infil-
tration with HA and silica NPs.'®*

Cementum. Cementum is a thin specialized calcified,
fibrillated bone substance that covers the dentine of
the root (Figure 2). By weight, the cementum is approx-
imately 65% inorganic material (mainly HA), 23% or-
ganic (collagen type |, proteins, and polysaccharides),
and 12% water. The HA crystals in cementum are thin
and plate-like with an average size of 55 x 8 nm. The
thickness of cementum is considerably higher at
the root apex (50—200 um) compared to the cervical
part of the tooth (10—15 um).'® There appears to be
limited studies of ENMs on the cementum layer of the
tooth or on the cementocytes (e.g., effect of bioactive
glass NPs on cementoblasts'®).

Pulp. Pulp is located in the pulp chamber, which
occupies the central portion of the tooth (Figure 2).
The nerves present in the pulp allow detection of
external stimuli and account for the sensation of teeth.
The main function of the pulp is the formation of
dentine.’”” The odontoblasts that are responsible
for the formation of dentine lie along the periphery
of the pulp tissue. Other cells present in the pulp
include fibroblasts, preodontoblasts, macrophages,
and T lymphocytes.

One prospective area of research for the dental pulp
is the use of ENMs in regenerative medicine. Pulp stem
cells can be used as a restorative clinical treatment to
regenerate both the pulp and vasculature in the
tooth.®® Dysfunction of stem cell differentiation is also
generally implicated in DNA damage and tumorgen-
esis in the head and neck.'”''® ENMs have been
proposed for medical imaging of stem cells (iron NPs,
quantum dots) in order to track the migration and
differentiation of the cells, as well as the use of nano-
fiber scaffolds to aid the regeneration of pulp tissue.'”
Naturally occurring nanostructures such as nanotoliths
with bacterial cellulose have also been proposed as
scaffolds for pulp regeneration.'""

CURRENT STRATEGIES FOR CLINICAL DENTISTRY:
A ROLE FOR ENMS?

The etiology of pathogenesis in the oral cavity is
complex, and a primary strategy for dentistry is the
prevention of disease. Oral hygiene instructions for the
patient is the first attempt in preventing both carious
lesions and periodontal disease.'’>"'* Clearly, the use
of antibacterial and/or abrasive ENMs in toothpaste
may aid teeth cleaning. However, ultimately, the dental
pellicle is the natural barrier that protects the hard
tooth structures and the supporting tissues from the
adverse effects of microorganisms and their corrosive
metabolites.'’® The antibacterial properties of some
ENMs could be used to supplement the natural
immune defenses (e.g., immunoglobulins, lysozyme)
already present in the pellicle. The dental pellicle,
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however, is also the structure in which bacterial colo-
nization begins. Perhaps ENMs can be designed to act
as receptors for species-specific bacterial adhesion to
the tooth surface; in essence, using ENMs as a
“probiotic” surface to promote healthy microbes in the
pellicle, or to aid in the restoration of a normal biofilm
following dental treatment. The demineralization of the
tooth structure caused by acidic bacterial metabolites
might be ameliorated by the use of alkali ENMs, which, for
example, might slowly release phosphate or bicarbonate
buffering by dissolution (pH control at the tooth surface).
The inflammation of the soft tissue by factors such as
lipopolysaccharides (LPS) released by bacterial infection
in the biofilm'™> may be hard to prevent with specific
chemical buffering because of the diversity of bacterial
exudates. Nonetheless, metallic ENMs do absorb LPS
very well'’® and might reduce the bioavailability of this
inflammatory agent.

Furthermore, dietary abrasion of enamel during
mastication has been hypothesized to release naturally
occurring nanoscaled HA particles, which are known to
reduce oral biofilm formation and produce a reminer-
alization effect to prevent carious lesion progres-
sion."’”” With soft diets of today consisting of less
protein and increased carbohydrates, the release of
protective nanoscale HA is likely to be in decline;
contributing to growing incidence of caries in the
human population."”” "% Potentially, toothpastes
and other oral hygiene products could be supplemen-
ted with engineered nano-HA to combat this problem,
but the underlying cause of poor diet also needs to be
addressed.

The dental materials of today are greatly challenged
by secondary disease (e.g., recurrent caries) after initial
treatment, one of the main reasons for failures in
dental materials.'?'~'?* For this reason, an interest in
the bioactivity of dental materials is increasing, as
materials need to go beyond the physical and mechan-
ical aspects of tissue repair. In direct tooth restoration
with new composite materials, mechanical properties
such as wear resistance, surface hardness, fracture
toughness, and compression, tensile and flexural
strengths are required to meet demands in the oral
environment and be sufficient to withstand mastica-
tory forces.'?> "%’ While improvements in these areas
are being accomplished for direct restorative materials,
several limitations still exist in modern materials.'?’
The difficulties include adapting the material to the
internal surfaces of a prepared cavity, creating an
effective marginal seal at the cavity—tooth interface,
marginal deterioration over the life of the restoration,
material discoloration over time, secondary decay caused
by material microleakage, and postoperative sensi-
tivity."*®'?° Nanotechnology has the potential to bring
improvements in the physical and mechanical pro-
perties of dental materials, but the bioactivity aspect
should not be overlooked. This might include biocidal
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properties of ENMs and ENMs coated in factors to
promote a beneficial immune response in the diseased
tissue (e.g., cytokines, compliment activation), and sub-
sequently growth factors to promote angiogenesis and
wound repair.

Restorative dentistry has traditionally focused on
the use of dental materials to replace tissue in the
oral environment in order to restore physical func-
tion following tissue loss from disease processes.'*°
Although success with respect to mechanical function
is often achieved, the broader biological function of
the tissue is not. The mechanical and biological proper-
ties of living teeth are intimately related. Odontoblasts
are key cells in tissue regeneration and function
in tertiary dentine development to protect the vital
pulp from any continuation of disease processes or
trauma.'®"'*2 New ENMs that promote pulpal cell
repair and cell differentiation may increase dental pulp
vitality during or after restorative processes and ulti-
mately improve oral health.

In the periodontium, regeneration of bone that has
been lost due to periodontal disease could be a vital
step in the cessation of disease itself; where period-
ontal pocketing creates disease-promoting archi-
tecture in the oral environment.'*® For example,
engineered nanostructures could be used as a bone
replacement,'** or ENMs that promote osseointegra-
tion (e.g., coated with HA) and/or bone regeneration
could be used. In the 1990s it became apparent that
enamel matrix proteins (EMPs) could promote fibro-
blast proliferation and growth, and commercial pro-
ducts, such as the enamel matrix derivative Emdogain,
and similar products that contain factors, such as
amelogenin, are used in new regeneration therapies
for tissue loss caused by periodontal disease. The use of
such derivatives highlights the importance of bioactive
materials in modern therapeutic strategies against
periodontitis.">* The use of ENMs to provide a more
targeted drug delivery of such therapeutics in dentistry
has yet to be explored.

ENGINEERED NANOMATERIALS AND THEIR USE
IN DENTISTRY

Antibacterials and Infection Control. Silver, zinc, and
copper have been traditionally used as antimicrobial
agents for many centuries. Metals and their oxides
have been incorporated in a wide range of dental
material applications, either alone or in combination
with other components;'*® and there is interest in
replacing the traditional micron-sized antimicrobial
metal powders with their nanoscale counterparts
(Table 1). The superior bactericidal activity of ENMs is
attributed to their increased surface area and the
possibility to interact directly with the bacterial cell
wall because of their small size. Nanoparticulate silver
is the most favorable antimicrobial agent among the
metals;"*” ' followed by TiO,.'**'*! Zn and ZnO NPs
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have also been suggested for use in dental applications
due to their antibacterial properties.'**'** However,
the number of the applications of nanometals in
dentistry is limited, and for example, Zn does not have
the acceptance it has in other fields such as the food
industry.'** CuO is cheaper than Ag, with the advan-
tage of being a stable chemical and with physical
properties that allow it to be easily mixed with
polymers.'*> However, Cu NPs have not been fully
investigated as potential antibacterial agents in dental
materials. Similar arguments apply to Au NPs.

Ag NPs may be favored over other nanoparticulate
metals because silver is more bactericidal, while
equally hard. In a comparative study, Besinis et al.
showed that Ag NPs are more antibacterial against
cariogenic bacterial species when compared to other
metal NPs.>® Ren et al. found the minimum bactericidal
concentration (MBC) of Ag, ZnO, and CuO against
Pseudomonas aeruginosa to be 100, >5000, and
5000 ug mL~', respectively.'* The corresponding
MBC values against Staphylococcus aureus were 100,
2500, and 2500 1g mL™"; confirming the supremacy of
Ag NPs. At the same time, silver, copper, and zinc all
score 2.5—3.9 on the Moh's scale of hardness (titanium
scores 6.0).

The size and shape of metal ENMs may also affect
their bactericidal activity. Materials with a particle size
of less than 10 nm have been shown to be the most
effective against bacteria,'*®'*” while triangular NPs
may be more bactericidal compared to those with
spherical or needle-like morphology.'® Conversely,
Suwanboon et al. found the antibacterial activity of
ZnO NPs of different shapes (nanorods, platelet-like,
nanoflowers) to be similar.'*® Metal-containing NPs are
not the only type of ENMs known to provide antimi-
crobial properties to dental materials. Quaternary
ammonium polyethylenimine, chitosan, silica, and
bioactive glass NPs have also been suggested.'*°~ 152

The choice of antibacterial ENMs mainly depends
on the type of dental application. For example, Ag, Zn,
and TiO, NPs are commonly incorporated in resin-
based composites or used as antimicrobial coatings
for dental materials and implants; while others such as
bioactive glass nanopowders are mostly used as root
canal disinfectants (Table 1). Silica NPs have been
reported to inhibit bacterial adherence and control
the growth of the oral biofilm.'*>'** Although silica
NPs have no inherent bacterial toxicity, it is likely that it
is the unfavorable substrate (surface morphology and
chemistry of silica NPs) that prevents or delays bacterial
adherence and biofilm proliferation. The antimicrobial
activity of some ENMs can be enhanced with UV light
(e.g., crystalline TiO, NPs'?%). Certain metallic NPs (e.qg.,
Ag and Cu NPs) have been proved effective against a
wide range of bacterial strains including S. mutans,
S. aureus, P. aeruginosa, E. coli, E. faecalis, S. sobrinus,
and S. epidermidis,'>>'>® while others are more
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bacteria-specific depending on their mechanism of
action (e.g., ZnMgO NPs show highly specific antibac-
terial activity to Gram-positive bacteria'>’).

In order for ENMs to be generally accepted as
replacements for the traditional antibacterial agents,
they must first satisfy the regulatory requirements of
any potentially new therapeutic of being safe, or safer
than the existing product, and more effective.'”®
Additionally, any therapeutic agent should not com-
promise the integrity of the dental materials. Confi-
dence in new nanotechnology may come from using
ENMs as carriers for traditional antibacterial agents; for
example, composites based on the release of chlorhex-
idine, the active ingredient in mouthwashes.'*® How-
ever, such an approach may suffer from the short-lived
effectiveness of chlorhexidine.® In contrast, impreg-
nation of bactericidal NPs into resin-based composites
has demonstrated a long-lasting effect against cario-
genic bacteria without affecting the physical and
mechanical properties of the dental material.'’

Nanofillers. Some selected examples of the use of
ENMs as fillers in dental composites are shown in
Table 2. Dental composites generally consist of three
main components that are chemically different from
each other: the organic matrix (usually a synthetic
monomer or resin), the inorganic matrix (the filler),
and a coupling agent (usually silane) to bond the filler
to the organic matrix. Each of these phases can be
modified, and the resultant combination of the three
components determines the physical, chemical, me-
chanical, and optical properties of composites, as well
as their clinical behavior. The introduction of new
materials in the past few years, such as phosphine
oxide initiators and monomethacrylate diluents,'®" has
led to dental composites with improved properties.
However, it was not until the introduction of nanofillers
where significant new advances in the composites
were achieved (Table 2).

The chemistry, the morphology, and the size of filler
particles used in dental composites vary significantly,
even within the nanoscale (Table 2). However, the aim
of incorporating fillers to the resin, regardless of the
type of filler, is to optimize the properties and perfor-
mance of the final restorative material. The addition of
fillers can enhance the mechanical properties of com-
posites, reduce the polymerization shrinkage, modify
the thermal expansion coefficient of the composite to
match that of the tooth, improve handling, provide
radio-opacity, and provide the composites with wear
resistance and translucency.'®? Conventional compo-
sites contain a range of fillers including silica, quartz,
and radiopaque silicate particles based on the oxides of
barium, strontium, zinc, aluminum, and zirconium.'®® A
widely accepted classification based on filler particle size
was proposed by Lutz and Phillips, where composites are
distinguished as macrofiller composites (0.1—100 um),
microfiller composites (0.04—0.1 um), and hybrid
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composites (fillers of different sizes).'®* However, resin-
based composites can be classified either according to
their composition or the filler particle size.'®®

Most of the current conventional composites have
a filler particle size in the range of 0.04—0.7 um.
The concern is that particles of these sizes cannot
interact optimally with the nanoscopic (1—10 nm)
structural elements of enamel and dentine, such as
the enamel rods, HA crystals, dentinal tubules, and
collagen fibers.'®® As a result, the adhesion between
the restorative material and the tissue can be compro-
mised. However, the manufacturing of new advanced
composites with unique properties became possible
with the introduction of nanofillers (particle size
1—100 nm, Table 2). The smaller particle size di-
minishes polymerization shrinkage, offers more uni-
form particle distribution, allows a higher filler load,
reduces viscosity, and offers better handling, while
the mechanical properties remain sufficiently com-
petent.'® The average filler size in nanocomposites is
40 nm, but this is not a breakthrough as the same filler
size had been achieved with the so-called “microfilled
composites” since the 1970s. The real innovation with
nanofillers is their ability to increase the load of the
inorganic phase. Microfilled composites have a 50 wt %
filler load compared to 80 wt % for the nanofilled.'®’”
Filtek Supreme (3 M ESPE, St. Paul, MN, USA) was the
first dental nanocomposite to be launched in the
market in 2002. Other examples of commercially avail-
able nanocomposites are Premise (Kerr/Sybron, Or-
ange, CA, USA), GrandiO (Voco, Cuxhaven, Germany),
Ceram-X (Dentsply DeTrey, Konstanz, Germany), 4
Seasons (lvoclar Vivadent, Schaan, Liechtenstein), and
Palfique (Tokuyama Dental Corp., Tokyo, Japan).

Adding nanofillers to enhance the physical and
mechanical properties of resin-based composites is
advantageous, and incorporating the highest possible
percentage of filler content is the ultimate aim. How-
ever, the maximum filler load should be carefully
considered because there are limitations. Table 2
shows that the effect of nanofillers on the mechanical
properties of composites has received special atten-
tion. Some of the mechanical properties commonly
measured include microtensile bond strength, flexular
strength, diametral tensile strength, fracture tough-
ness, microshear bond strength, Vickers hardness, and
compressive strength.

Lohbauer et al. found that elevating the concentra-
tion of zirconia nanofillers in either the primer or the
adhesive gradually increased the microtensile bond
strength.'®® Although the highest values were re-
ported for 20 wt % filler content, even specimens with
a low filler profile (5 wt %) had enhanced mechanical
properties compared to the unfilled controls. Other
research groups have also reported that composites
had better mechanical properties when they con-
tained nanofillers at a higher concentration.'®*~172

VOL.9 = NO.3 = 2255-2289 = 2015 F@L@Mi{\)

WWwWW.acsnano.org

2277



However, there does appear to be an optimal max-
imum of the percentage of nanofiller in the resin
composites, after which the mechanical properties do
notimprove further, or even deteriorate. In some cases,
the mechanical performance declined to such an ex-
tent that the unfilled controls were superior.'®%71173
The optimal filler load varies significantly between
materials and was about 10 wt % for CaF,, 0.2 wt %
for HA, 0.5 wt % for sodium montmorillonite (Na-MMT),
and 40 wt % for silica nanofillers (Table 2).'%°~"72
However, some caution should be used when compar-
ing the optimal filler load across ENMs because the
studies so far have not used standardized methodolo-
gies to prepare the composites; each necessarily re-
quiring a different NPs synthesis, types of resin,
modifications of the particle surface, and the timing
of the polymerization process. Nanofilled composites
may not always enhance mechanical properties com-
pared to microfilled composites. Ruttermann et al.
found that solubility and shrinkage were similar for
both types of composites, but the nanofilled com-
posites demonstrated higher water sorption and
opacity.'”*

Although spherical nanofillers are popular, partly
because they distribute stress more uniformly across
the bulk volume of the composite resin and inhibit
crack formation;'%® CNTs have also been investigated.
Zhang et al. synthesized a composite based on single-
walled carbon nanotubes (SWCNTs).'”> The result was
a nanocomposite with improved mechanical perfor-
mance. SWCNTs are well-known to have exceptional
strength, but they can also be accepted at higher filler
concentrations by resin systems due to their unique
dimensional distribution (aspect ratio >1000).'7°
Further research should be encouraged on resins
accommodating CNTs.

The aesthetics of the composite is also a critical
issue for patients, and for example, color matching
with the patients natural teeth is desirable. NPs have
been employed to modify the translucency for im-
proved aesthetics.'””” However, the optical properties
are also of clinical importance, and nanofillers have
been used to match the radiopacity of dental
adhesives'’® and to reduce the working and setting
times for resins.'’® Clearly, nanofillers can improve
some material properties while compromising others
in the overall nanocomposite. The practitioner should
therefore take an overview of the composite in the
context of clinical considerations, which are mainly
determined by the position of the cavity and the
aesthetic requirements.'®>

Dental Implants. The aim of the dental implant man-
ufacturer is to provide a product with a high success
rate after the initial implantation and longevity. At
present, the failure rates are 5—10%, mainly due
to poor osseointegration, infection, or rejection.'”®
The future of a dental implant is dictated by the
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inflammatory response and the behavior of the tissue
at the tissue—implant interface in the individual pa-
tient. Consequently, the implant surface chemistry and
topography are fundamental aspects to be considered
when designing an implant. Cells are typically around
10 um in diameter, but the cell parts are much smaller,
in the submicron scale. The proteins secreted during
osseointegration are even smaller with a typical size of
just 5 nm; which is close to the dimensions of the
smallest man-made NPs.'®° The notion of ENMs with
sizes comparable with basic biological components
has been used as an argument for the bespoke design
of ENMs for medical applications where the materials
interact with cells and tissues at a molecular level with a
high degree of specificity.'®" In principle, this idea also
applies to dental implants incorporating nanotechnol-
ogy. Table 3 shows some selected examples of the use
of ENMs in dental implant applications.

Modifying the surface of Ti implants is one way to
improve how an implant interacts with the surround-
ing tissues. The application of a thin ceramic layer on
metallic implants is a popular way to enhance the
formation of new bone and avoid adverse inflamma-
tory reactions. The ceramic nanomaterials selected for
manufacturing coatings on Ti implants are those that
have been classified as bioactive and mainly include
HA,'827'84 bioactive glass,'®® and other calcium phos-
phate compounds.'®'® Nano-HA is probably the
most preferable material used as a coating for Ti, Ti
alloy, and stainless steel implants because it is similar to
the inorganic component of bone. The application of
nano-HA coatings renders the surface of implants
biocompatible and encourages an increased cell ad-
herence compared to the metallic surface of uncoated
implants. In vivo experiments with animal models have
suggested that Ti implant surfaces modified with HA
NPs show enhanced bone bonding and accelerated
new bone formation.'®®'% |t has been demonstrated
that dental implants coated with HA NPs have better
bone-to-implant contact and increased removal tor-
que values compared to the uncoated controls.'?
However, the surface roughness and chemistry of
implants are not the only factors that determine the
biological responses. It has been suggested that parti-
cle size and morphology (e.g., spherical, rod-shaped,
crystals) also play an important role in osteoblast
adhesion and their bone-forming capacity.'9>'%3

Implants coated with 20—100 nm calcium phos-
phate (CaP) nanocrystals have demonstrated similar
enhanced osseointegrative behavior in vivo.'?*'%
In vitro studies showed that osteoblasts (but not stem
cells) had better proliferation on nano-CaP-impregnated
Ti implants compared to untreated controls.'®® How-
ever, both cell types demonstrated higher differentiation
activity on surface-modified specimens. Alumina is an-
other nanoceramic candidate with promising osseoin-
tegrative properties. Webster et al. reported increased
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osteoblast proliferation and adhesion on substrates made
of nanosized alumina (24 nm).'®” Alumina nanofibers
(2 nmin diameter, 50 nm long) have also been found to
encourage osteoblast differentiation and calcium
deposition.'®® Yang et al. found that smaller particles
of nanodiamonds promoted osteoblast adhesion and
proliferation more compared to larger particles.'® This
latter finding could be the basis for manufacturing
coatings with variable particle sizes to control the
degree of bone apposition and favor bone growth at
specific anatomical locations. Other types of NPs, such
as yttrium-stabilized zirconia and CNT-CaP NPs (Table 3),
have also been investigated as means to reinforce Ti alloy
and polymer-based implants, respectively.'8%2%°
Numerous in vivo and in vitro studies have sug-
gested that nanoparticulate coatings render dental
implants more biocompatible while facilitating forma-
tion of new bone and reducing healing time (Table 3).
However, a considerable number of scientific reports
have also shown no significant benefits from modify-
ing implant surfaces with NPs. In vivo studies compar-
ing blasted/acid-etched Ti endosseous implants
(controls) with specimens further subjected to a bio-
ceramic deposition process to form a nano-CaP coat-
ing did not indicate any difference in bone bonding or
healing between the two groups.?°' 2% A possible
explanation for these results is that the optimal bone
quality of the implant bed overshadowed the superior
osseointegrative properties of the CaP-coated speci-
mens. This may suggest that in vivo studies selecting
healthy bone tissues as implantation sites do not
mimic the poor state of bone in edentulous patients.
Despite extensive research, it is still not clear
whether the improved properties of the nanocoated
implants are derived from the chemistry of the coat-
ings or whether it is due to the change that the
coatings introduce to the surface roughness of the
implants. Mendes et al. argue in favor of the latter
suggesting that the improved osseointegration found
for implants coated with nanocrystalline CaP arises
from the complexity of the resultant surface rather
than the CaP chemistry itself.2%* In general, the degree
of osseointegration is improved with increased surface
roughness;*®> and nanomodified dental implants do
have increased surface roughness compared to stan-
dard metallic implants with polished surfaces. Conse-
quently, one might argue that the advantage of
the NPs deposition on the dental implants surfaces
is mainly due to the introduced nanotopography.
However, further research is required to either support
or reject this hypothesis. It is noteworthy that many
studies in the current literature fail to fully characterize
the implant surfaces under investigation, and in some
cases, scanning electron microscopy (SEM) is the only
technique employed to describe these surfaces and
compare between them. Thus, future studies should
include more advanced surface characterization
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techniques (e.g., 3D measurements for SEM, atomic
force microscopy, X-ray photoelectron spectroscopy)
to assess the nanostructure of coated implants and
provide quantitative data, which then could offer a
better understanding on whether the bone response is
determined by the surface nanotopography.2%62%/
Also, further investigation is needed on how the
particle size and morphology affects the host response
and ultimately the bone bonding.

Dentifrices and Personal Care Products. The use of denti-
frices (toothpastes, tooth powders, mouthwashes, etc.)
to manage oral health and generally help prevent
dental caries is recommended to the public. The use
of nanotechnology in these products is of growing
commercial interest. In principle, ENMs could be used
to aid the mineralization process of the enamel and/or
dentine (discussed above by providing HA, fluoride),
control microbes, and plaque as part of brushing (e.g.,
antimicrobial ENMs, Table 1), or provide nanoscale
minerals to enhance pH control (e.g., calcium phos-
phate). Employing artificial nano-HA in dentifrices,
such as toothpastes, to restore the lost mineral content
of enamel and dentine has been considered as a
sensible strategy.?°2"" Nano-HA has been tested in
different forms (spherical, needle-like, crystalline). Lu
et al. found that nano-HA added in toothpaste not
only enhanced the microhardness of enamel and im-
proved remineralization but may also reduce bacterial
colonization of the tooth surfaces?®® Other ENMs
that have been suggested to promote enamel and
dentine remineralization in experimental studies in-
clude nanoparticulate bioactive glass,?'*?'® nanosized
carbonated apatite alone or in combination with
silica,2'*2"> nanosized calcium fluoride,?'® carbonate-
hydroxyapatite nanocrystals,?'” and nanoprecursors of
amorphous calcium phosphates.'® Logically, these
materials might also be included in toothpastes or
other commercial dentifrices.

Nonetheless, there are some commercial products
where the basis for mode of action has been explained.
Casein phosphopeptide (CPP), which is produced from
a tryptic digest of casein by aggregation with calcium
phosphate and purification by ultrafiltration,?'® carries
calcium and phosphate ions bound to it in the form of
amorphous calcium phosphate (ACP). The CPP-ACP
nanocomplex is commercially known as Recaldent
and is available as a product under the brand name
GC Tooth Mousse (GC Ltd.) in the form of a topical
cream. As a rich source of calcium and phosphate ions,
the CPP-ACP nanocomplexes have been suggested to
promote enamel remineralization. When in the oral
cavity, the CPP-ACP nanocomplexes adhere to the
enamel, pellicle, plaque, and soft tissue, delivering
calcium and phosphate ions. The free calcium
and phosphate ions then enter the enamel rods and
reform into apatite crystals, contributing to the teeth
remineralization.
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The role of nano-HA and other Ca-based NPs has
been investigated as a treatment for dentine hyper-
sensitivity by occluding the dentinal tubules. %'
Application of 40 nm silica NPs has also been found
to form a physical barrier at the entrance of dentinal
tubules preventing the movement of the fluid within
the tubules, which is the cause of sensitivity problems.®®
Strontium chloride was the first tubule blocking
agent to be introduced to the market (as Sensodyne)
50 years ago.”?® However, strontium chloride was
incompatible with fluoride and was finally replaced
with strontium acetate. Although several studies have
shown that 10% strontium chloride dentifrices reduce
dentine hypersensitivity,?' ~2?* Zappa, who summar-
ized the results of clinical studies with strontium
chloride toothpastes, concluded that the clinical effi-
cacy of strontium-based products was uncertain.?**
Saliva naturally plugs the dentinal tubules both by
transporting calcium and phosphate ions into the
openings of the channels and by forming a calcium-
and phosphate-rich salivary glycoprotein layer.??® In an
attempt to mimic the natural occlusion mechanism,
ProClude (Ortek Therapeutics Inc.) was manufactured.
ProClude consists of arginine (an amino acid that is
positively charged at physiological pH), bicarbonate
(@ pH buffer), and calcium carbonate (as a source of
calcium). Arginine binds to the surface of calcium
carbonate and, in the form of positively charged
agglomerates, adheres to the negatively charged den-
tine surface and tubules.??® Colgate developed the
arginine technology (Pro-Argin) further by adding
fluoride.??” However, it has to be noted that a number
of studies have shown that brushing with toothpastes
designed for sensitive teeth has an adverse effect
causing dentine erosion and the tubules to open rather
than resolving the problem.?”® Clearly, there is an
emerging market for the use of nanotechnology in
dental healthcare products, and like other ENMs appli-
cations in the food or personal care sectors, the safety
and efficacy of these products need to be proven, as
well as improved product labeling to give clarity on
which products actually contain natural or ENMs (see
below).

SAFETY OF ENGINEERED NANOMATERIALS USED
IN DENTISTRY

The Safety of Patients. The current regulatory proce-
dures for approving new medicines and medical de-
vices and how they apply to ENMs has recently been
discussed,*® as well as considerations for occupational
health.?'?*° Briefly, the overarching process of con-
ducting a clinical trial with a medicine intended for
human use is covered by the Clinical Trials Directive
(Directive 2001/20/EC), which sets out the implemen-
tation of good clinical practice for such trials and
various codes relating to medicinal products for
humans (e.g., Directive 2004/27/EC). In addition,
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regulation EC number 726/2004 lays down the proce-
dure for the authorization and supervision of medicinal
products, and this involved establishing the European
Medicines Agency with some oversight of national
level authorities within Europe (Regulation (EC) No
26/2004). Juillerat-Jeanneret et al. argue that from a
legal and regulatory perspective that these regulations
apply equally to nanomedicines, as the fundamental
purpose of the regulations is the same for all
medicines.’*® Qutside the European Union, regulations
are often established at national level. For example, in
the United States the Food and Drug Administration
(FDA) provides federal regulations on the safety of
medicines (e.g., Federal Regulations 21). The founding
principles behind regulation include demonstrating
that the new product is effective for its intended
clinical use, or more effective than an existing product,
and it must be safe.'*® In the case of dentistry, Annex |
of the Medical Devices Directive 93/42/EC identifies
some legal requirements on the use of devices that
would include dentures and various dental implants,
whether or not they contained ENMs. The multivariate
use of different ENMs in composites, or to restore
dentine, presents some complexity for the regulations
since one of the drivers is the intended use of the
new substance. For example, the use of Ag NPs as an
antibacterial in a composite might be regarded as a
medicine, while the inclusion of (for example) CNTs or
HA for mechanical properties might fall under the
medical devices regulations. Some clarity on these
points is needed from governments and regulatory
authorities, but it would seem sensible for commercial
companies seeking product approval to be guided
by the main intended use of the whole product as a
starting point.

In essence, risk is a function of exposure and hazard
(toxicity), and both aspects are considered in risk
assessments for ENMs.?" For patients the exposure is
defined by the intended treatment, the physical form,
and concentrations of the ENMs in the therapeutic
agent or medical device. Since the intended treatment
(exposure) is usually known from the outset, although
some investigations of erosion and bioavailability of
ENMs from dental materials may be needed, the focus
is mainly on hazard assessment. The regulations for
toxicity testing also require that the route of uptake,
frequency of dosing, formulation, concentration, and
administration site must be related to the expected use
in humans. Consequently, for medicines used in den-
tistry, oral toxicity tests on animal models will be
relevant; as well as toxicity data on the tissues relevant
to the oral cavity.

There are several theoretical routes of exposure for
dental patients. These include (i) accidental or inciden-
tal ingestion of the nanocontaining dental material
during or after treatment; (i) the generation of aerosols
during dental treatment that might present a respiratory
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hazard to the patient (e.g., aerosols from drilling into a
nanocomposite during a dental repair); (iii) systemic
toxicity from any ingested or inhaled ENMs; (iv) direct
toxicity to the cells/tissue of the oral cavity.

The ingestion and subsequent systemic hazard
from oral exposure to ENMs has been studied in
rodents (Ti05;*3%?*' Cu NPs;?*2 Ag NPs'®) and fish
(Ti05;*3* Cgo and CNTs*3Y), as well as in vitro using the
Caco-2 intestinal cell line?>>23¢ or isolated perfused
intestines.>® Selected examples of oral toxicity studies
with different models are summarized in Table 5. It is
clear that some pristine (unmodified) ENMs can be
absorbed across the vertebrate gut from an ingested
food matrix (e.g., TiO>**3), and although for metal-
containing ENMs the bioavailability may only be a
few percent of the dose, this is not dissimilar to
traditional dissolved metal of concern like mercury.?*3
However, most oral toxicity studies on animal models
have used gut gavage,®? and there is some concern
that ENMs introduced to the gut via salines may have a
higher bioavailability than those in a food or dental
material matrix. Nonetheless, the use of physiological
saline would also be relevant to dental practice.

In vivo studies on rodents show that at least total
metal concentrations in the internal organs from ex-
posure to metal-containing ENMs can increase, and
this may also lead to organ pathology (Table 5). For
example, Wang et al. found pathology in liver and
kidney of mice after single oral gavage of TiO, NPs
(25 or 80 nm).2*" There is also at least one report of
argyria in humans after chronic ingestion of colloidal
silver solution, indicating that silver from nanosilver
can be absorbed.?*” However, there is controversy over
whether intact particles are absorbed across the gut
epithelium. Gitrowski et al. recently demonstrated
endocytosis of intact TiO, NPs by Caco-2 cells.>*®
Interestingly, the uptake mechanism was sensitive to
endocytosis inhibitors such as nystatin and was also
dependent on the crystal structure of the material;
indicating that shape/crystal form is also an important
aspect of the oral hazard.

The hazard from dental materials must be taken in
context with these studies on oral toxicity to animals,
and other oral hazards outside of dentistry for the
patient as a member of the public. For example, there
is a potential dietary exposure risk from food and
personal care products containing ENMs.'%'%238 |
addition, the mucociliary escalator in the lung may
clear ultrafine particles (e.g., from air pollution) from
the airway, which are then subsequently ingested. The
relative oral exposure from ENMs during intermittent
dental work may be small compared to the potential
long-term exposure via the food. For example, Weir
et al. estimate ingestion of about 1—3 mg of TiO, kg
body weight™' day ™', with about a third of the ma-
terial being at the nanoscale.'? A patient would there-
fore need to ingest grams of TiO, ENM on a visit to the
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dentist in order to achieve the same annual dose as
might be incidentally achieved from food products.

However, the toxicity data in the public domain on
ENMs used specifically in dental applications is sparse,
with no information on oral toxicity from dental mate-
rials, biomaterials, or implants containing ENMs in
animal models or patients. As a rule, dental materials
for permanent restorations are designed to be inert
and chemically stable in the oral environment. How-
ever, there has always been a concern that leaching of
toxic compounds may occur either as a result of
material instability or degradation, or due to inap-
propriate application or preparation of the dental
material by the clinician. Metal release from dental
materials is not uncommon (e.g., amalgams, metal
alloys®3®), but the reported elemental release is usually
negligible or comparable to that of food and drink
intake. The release of chemical substances leaching
from resin composites?*>?*" and endodontic sealers®****
has also been confirmed; raising the concern that patients
are unnecessarily exposed to potentially toxic chemicals
during and after treatment. However, similar information
for dental materials containing ENM:s is lacking.

There is also a concern of direct contact toxicity
from the ENM with the cells and tissues of the oral
cavity. The oral epithelium is mostly nonkeratinized
stratified squamous epithelium, with the exception of
gingiva, hard palate, and dorsal surface of the tongue.
The epithelium acts with saliva to form a protective
mucous barrier. The salivary film covering the oral
cavity has an estimated thickness of 70—100 um,***
whereas the thickness of the nonkeratinized squamous
epithelium varies between 500 and 800 um;*** the
latter being thicker than the epithelium of the esopha-
gus (300—500 um?*°) or the intestines (20—25 um?*’).
It therefore might be argued that the oral cavity is a
better barrier than, for example, the more permeable
intestine, but this notion derived from the transport of
solutes across epithelia has yet to be verified with
experimental data for ENMs.?*® It seems likely that
some types of ENMs will become trapped in the
mucous secretion of the saliva by steric hindrance
(discussed above), but nanomedicines are being en-
gineered to cross mucous barriers (e.g., to improve
drug delivery®*), and it is possible that such traits will
be useful in dentistry (e.g., delivery of antimicrobials,
anesthetics, etc.). However, there is a concern that
some ENMs are immunogenic®*® and would induce a
hypersensitivity reaction or inflammation in a vulner-
able patient. This risk may be present with traditional
medicines and medical devices, and whether the risk
would be greater for an ENM in the oral cavity is
unknown.

Occupation Exposure of the Practitioner. The occupa-
tional health of the practitioner should also be con-
sidered in the context of routes of exposure. For health
and safety in the workplace, safe systems of work are
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aimed at preventing exposure so that there is a negli-
gible risk. This approach also applies to ENMs, 202"
although in practice employers do show some uncer-
tainty about what might be nanospecific in the govern-
ance of health and safety.?> Potential exposure of the
practitioner could arise from incidental ingestion or
dermal contact. However, the clinical practice of wear-
ing surgical gloves and not eating or drinking while
treating patients should minimize these exposure
routes as they would with other substances.

Exposure to aerosols of dental materials containing
ENMs has not been quantified in a workplace scenario,
and there is a theoretical exposure from activities
such as drilling or filing into a restoration that already
contains ENMs. There are exposure limits set for dusts
and powders that might create an aerosol in the
workplace (e.g., 10 mg m~3 for an 8 h exposure to dust
generally in the U.K)), and reports from various health
and safety agencies indicate exposures of a few mg
m~3 or less to workers in ENM manufacturing plants.?>3
The exposure risk to dentists working with only a few
grams of dental material at a time is likely, therefore, to
be much less. Interestingly, studies on abrasion/sand-
ing of industrial coatings and composites find mainly
negligible (not detectable) or low releases of free
ENMs.2>* This might imply that a similar activity by a
dentist such as abrading/shaping a dental composite
might be low risk. However, distance from the point
source of the exposure is also critical, and in dentistry,
the practitioner is inevitably very close to the patient.
Clearly, further research is needed on workplace ex-
posure to ENMs in dentistry.

CONCLUSIONS AND RECOMMENDATIONS

There appears to be many potential benefits to
patient outcome from using nanotechnology in den-
tistry. The benefits include new materials for preventa-
tive health care using dentifrices that are either
antimicrobial and/or have some restorative properties
for the enamel and dentine. The use of ENMs to enhance
the mechanical and physiological functions of the tooth
via new nanofillers and composites should provide an
enhanced capability for some areas of restorative den-
tistry. The use of ENMs to improve osseointegration,
infection control, and biocompatibility of dental im-
plants may reduce the rejection rates in some invasive
procedures. There are also completely new frontiers in
dental treatment such as the use of ENMs to control and
direct pulp stem cells in order to regenerate the tooth.

These potential benefits should be balanced against
the risks. For the patient the exposure to ENMs will be
controlled by the planned dental treatment, and thus,
the main concern is on the hazard of the ENMs in
dental materials. The data so far indicates that oral
toxicity for ENMs is low, but some ENMs are translo-
cated across the gut to cause systemic disturbances,
perhaps with organ pathology. However, the matrix in
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which the ENM is incorporated will be important, and
oral toxicity studies have yet to be done with dental
materials containing EMNs. Overall, however, the in-
formation so far indicates that the oral hazard is low
or manageable and should not be a barrier to the
safe innovation of nanotechnology in dentistry. The
safety assessment processes in place for medicines
and medical devices remain robust, and although
individual toxicity tests may need modifications to
work well with ENMs, the overall safety strategy is
appropriate. Nonetheless, there are some improve-
ments in health and safety that can be made. For
example, better guidance to practitioners on nanoin-
corporated products with respect to patient safety and
occupational health. For the public and patients, the
nanospecific labeling on the many personal care pro-
ducts in dentistry could be improved to clearly identify
the nanoingredient(s). Thus, giving clarity on whether a
product actually contains an ENM and what the pro-
posed mode of action or benefit of the new product
might be to the consumer.

Research Recommendations and Data Gaps. Although the
potential benefits appear to outweigh the risks asso-
ciated with using ENMs in dentistry, there are still
several areas where knowledge can be improved.
These include:

(i) Specific research to understand how the protein

corona is formed on ENMs in saliva, and how the
ENM might change the bioavailability of active
ingredients in the saliva. It is also unclear how
or if ENMs alter the secretory functions of the
salivary glands.

(i) Research on clinically relevant biofilms. Although
there is some understanding of laboratory cul-
tures of microbes and ecologically relevant bio-
films, in contrast, biofilms in/on the human body
are poorly understood with respect to ENMs.
Some targeted research on the oral cavity biofilm
is needed to underpin the role of ENMs in drug
delivery, antimicrobial functions, and on pene-
tration to the dentine surface.

(iii) Mechanistic investigations on how ENMs
strengthen the tooth structure (enamel, den-
tine, pulp, and cementum) and further explora-
tion of adding physiological function to nano-
enhanced dental materials. The use of second
and third generation ENMs with complex three-
dimensional structures rather than particles
needs to be explored for its mechanical proper-
ties in dental applications.

(iv) The use of ENMs in dental therapeutics for drug
delivery and to provide growth factors involved
in tissue regeneration or stem cell treatments is
worthy of more investigation with respect to
both efficacy and safety.

(v) New dentifrices containing ENMs offer the
chance of preventative dentistry and better
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public health, but consumer choice is impor-
tant. Research on the composition of existing
products and product labeling are part of im-
proving consumer confidence in using com-
mercial products containing nanotechnology.
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